SOLID STATE PHASE FORMATION IN THE Bi₂O₃-PbO-CaO SYSTEM

A. Brăileanu¹, M. Zaharescu¹, D. Crișan¹ and E. Segal²

Abstract

Following our previous research, this work is dedicated to the study of phase formation in the subsolidus domain of the Bi₂O₃-PbO-CaO system.

Former investigations performed by DTA/TGA and XRD have pointed out that under non-isothermal conditions only the formation of binary compounds occurs. Under such conditions these compounds could be non-equilibrium phases.

In order to establish the conditions of formation of equilibrium phases, a study of the Bi₂O₃-PbO-CaO system, in isothermal conditions, was carried out. The results obtained in isothermal conditions have confirmed the presence of Bi₂O₃-rich solid solutions and Ca₂PbO₄ as main equilibrium phases. An attempt to represent the phase relations of the mentioned system at 700°C should be equally mentioned.

Keywords: Bi₂O₃-PbO-CaO system, DTA, solid-state reactions, X-ray diffraction

Introduction

It is now well-known that the obtaining of superconducting materials in the Bi₂O₃-(Sr,Ca)O-CuO system is a very complex process which occurs by successive solid state reactions.

Former results [1] indicated that the reactivity of the components in systems containing Bi_2O_3 and CaO is much higher than in systems containing CuO and SrO. In the meantime the presence of PbO enhances high- T_c superconducting phase formation [2–10].

Our previous research [11], in non-isothermal conditions, has shown that when PbO and Bi₂O₃ coexist with CaO, the first reaction which occurs is that between Bi₂O₃ and PbO. On increasing the temperature, the so formed compound melts leading, in the presence of CaO, to the preferential formation of 2CaO-PbO₂. The last compounds which are generated in the system result from the reaction between Bi₂O₃ and CaO. The formation process occurs in several steps. Firstly, solid solutions with the molar ratio Bi₂O₃/CaO higher than in the initial mixture are obtained.

¹Romanian Academy, Institute of Physical Chemistry, 202 Spl. Independentei, 77208 Bucharest

²University of Bucharest, Faculty of Chemistry, Department of Physical Chemistry 13 Bly, Republicii, Bucharest, Romania

Subsequently, these react with the excess of CaCO₃ leading to the formation of the stoichiometric compound 4CaO₃Bi₂O₃.

Thus, in the considered system, the phase formation reactions are complex and the obtained products could be non-equilibrium ones.

This work aims an investigation of the conditions of formation of equilibrium phases in the Bi₂O₃-PbO-CaO system. An attempt to represent the phase relations of the mentioned system at 700°C was carried out.

Experimental

Preparaton of mixtures

The raw materials were p.a. grade oxides and carbonates: Bi₂O₃ (Carlo Erba), CaCO₃ (Merck) and PbO-massicote (Fluka). The ternary oxide compositions were realised by a dry homogenization technique for one hour.

The initial mixtures were used as powdered samples for non-isothermal investigations.

For isothermal investigations, pellets, 10 mm diameter and 2 mm thickness, were prepared using a die press, by compaction at 30 MPa. The pellets were sintered for 10 h at the characteristic temperatures as shown by the DTA curves.

Methods of analysis

DTA investigations of the studied mixtures were performed up to 800° C, in static air atmosphere with α - Λl_2O_3 as reference at a heating rate of 5° C min⁻¹. Λ MOM Budapest type Paulik-Paulik-Erdey derivatograph OD-102 was used.

The thermal analysis data were completed with X-ray diffraction data in order to clarify the mechanism of phase formation in the studied system. A HZG 3 X ray dif

Fig. I The position of the investigated samples in the ternary system Bi₂O₃-PbO-CaO

fractometer with CoK_{α} radiation was used. The phases were identified according to the JCPDS files [12] and literature data [13, 14].

Results and discussion

Non-isothermal treatments

Previously [11], non-isothermal investigations on six compositions corresponding to the formulae $2\text{CaO} \cdot (\text{Pb}_{1-x}\text{Bi}_x)\text{O}_{2+x}$, with x=0, 0.5 and 0.8 and $5[(\text{Bi}_{1-y}\text{Pb}_y)_2\text{O}_{3-y}] \cdot 7\text{CaO}$ with y=0, 0.2 and 0.5 were carried out. In this work, the sample number was extended with the compositions B_3 with x=0.8 and C_3 with y=0.8 and the compositions shown in Fig. 1, which are located at the intersection of the possible coordination lines between the binary compounds from the studied system.

Table 1 shows the molar composition of the investigated samples as well as the peak temperatures corresponding to the DTA curves, in the temperature range 400–800°C. Under 400°C, the samples do not exhibit characteristic thermal effects.

The thermal effects are concentrated around three temperature ranges. Except samples 1 and B₃ the low temperature effects are recorded close to 600°C. Most of the samples show thermal effects close to 700°C and in some cases thermal effects close to 800°C are recorded.

Table 1 The molar composition and the DTA results for the investigated	gated samples
--	---------------

C1-	Composition/mol%		nol%	Thermal effects (endo)/°C	
Sample	Bi ₂ O ₃	PbO	CaO	Thermal effects (effect) C	
1	74.5	8.4	17.1	682, 795	
3	50.0	16.8	33.2	605, 680, 710, 735 ^s , 758, 798 ^s , 800	
4	33.3	22.5	44.1	590°, 618, 680, 740	
5	25.0	50.0	25.0	590°, 615, 670°, 700°, 735	
7	30.0	10.0	60.0	600, 660 ^s , 682 ^s , 740, 760, 790	
9	16.6	20.4	63.0	575°, 595, 715, 738°, 788	
2	8.2	25.0	66.8	570°, 592°, 640, 705, 740, 785	
8	19.0	43.0	38.0	568, 620, 630, 698	
6	16.5	50.0	33.5	590, 640, 658	
10	14.0	57.0	29.0	570, 620, 640	
B ₂ *	15.4	7.7	76.9	595, 655 ^s , 675 ^s , 762, 780	
$\mathbf{B_1}^{\bullet}$	9.1	18.2	72.7	570, 597 ^s , 622 ^s , 640, 700, 760, 780	
$\mathbf{B_3}^{\bullet}$	3.4	27.6	69.0	678, 708, 722, 760, 780°	
C_{i}^{*}	30.8	15.4	53.8	580 ^s , 605, 668, 705 ^s , 735, 785	
C_2	17.2	34.5	48.3	580, 630 ^s , 642, 687 ^s , 720, 765	
C_3	62.0	50.0	43.8	590 ^s , 635 ^s , 658, 690	

^{*} samples studied before [11]

shoulder

Table 2 Phases identified by X-ray diffraction in the samples themally treated under isothermal conditions (10 h)

Sample	Thermal treatment (10 h)						
	600°C	700°C	800°C ss CaO·3Bi ₂ O ₃				
1	Bi ₂ O ₃ , 6Bi ₂ O ₃ ·PbO ss CaO·3Bi ₂ O ₃	ss CaO·Bi ₂ O ₃					
3	6Bi ₂ O ₃ ·PbO, CaO·Bi ₂ O ₃ 5CaO·7Bi ₂ O ₃	ss α'_1 -3CaO-4Bi ₂ O ₃ 33CaO-67(1/2Bi ₂ O ₃) ^[13]	ss \alpha_1''-3CaO·4Bi ₂ O ₃				
4	$2CaO \cdot PbO_2$ ss $\alpha_1'' - 3CaO \cdot 4Bi_2O_3$	CaO·Bi ₂ O ₃ 2CaO·PbO ₂	$\begin{array}{c} 4\text{CaO} \cdot 3\text{Bi}_2\text{O}_3\\ \text{ss } \alpha_1^{\prime\prime} - 3\text{CaO} \cdot 4\text{Bi}_2\text{O}_3\\ 2\text{CaO} \cdot \text{PbO}_2 \end{array}$				
5	$2CaO \cdot PbO_2$ ss $\alpha_1'' - 3CaO \cdot 4Bi_2O_3$	2CaO·PbO ₂ CaO·Bi ₂ O ₃	$\begin{array}{c} 2CaO \cdot PbO_2\\ ss\ \alpha_1^{\prime\prime} - 3CaO \cdot 4Bi_2O_3\\ 4CaO \cdot 3Bi_2O_3 \end{array}$				
7	$\begin{array}{c} 4\text{CaO} \cdot 3\text{Bi}_{2}\text{O}_{3} \\ \text{ss } \alpha_{1}^{\prime\prime} - 3\text{CaO} \cdot 4\text{Bi}_{2}\text{O}_{3} \\ 2\text{CaO} \cdot \text{PbO}_{2}, \text{ a} \end{array}$	4CaO·3Bi ₂ O ₃ 2CaO·PbO ₂	4CaO·3Bi₂O₃ 2CaO·PbO₂				
9	$ \begin{array}{c} 2\text{CaO-PbO}_2 \\ 4\text{CaO-3Bi}_2\text{O}_3 \\ \text{ss } \alpha_1^{\prime\prime}\text{-3CaO-4Bi}_2\text{O}_3 \text{, a} \end{array} $	4CaO·3Bi ₂ O ₃ 2CaO·PbO ₂	4CaO·3Bi ₂ O ₃ 2CaO·PbO ₂				
2	2CaO·PbO ₂ 4CaO·3Bi ₂ O ₃	2CaO·PbO ₂ 4CaO·3Bi ₂ O ₃	2CaO·PbO ₂ 4CaO·3Bi ₂ O ₃				
8	2CaO·PbO ₂ 6Bi ₂ O ₃ ·PbO 4Bi ₂ O ₃ ·5PbO, a	2CaO·PbO₂ 4Bi₂O₃·5PbO	2CaO·PbO ₂				
6	2CaO·PbO ₂ m	2CaO·PbO ₂ 4Bi ₂ O ₃ ·5PbO, m	2CaO·PbO ₂				
10	2СаО РЬО ₂ m	2CaO PbO ₂ m	2CaO PbO ₂				
\mathbf{B}_2		2CaO·PbO ₂ 4CaO·3Bi ₂ O ₃ 2CaO·Bi ₂ O ₃	2CaO·PbO ₂ 4CaO·3Bi ₂ O ₃				
\mathbf{B}_1	2CaO·PbO ₂ 4CaO·3Bi ₂ O ₃ CaCO ₃ , a	2CaO·PbO ₂ 4CaO·3Bi ₂ O ₃	2CaO·PbO ₂ 4CaO·3Bi ₂ O ₃				
B_3	2CaO-PbO_2 $4\text{CaO-3Bi}_2\text{O}_3$ $88 \ \alpha_1^{\text{r}}\text{-3CaO-4Bi}_2\text{O}_3$	2CaO·PbO ₂ 4CaO·3Bi ₂ O ₃	2CaO·PbO ₂ 4CaO·3Bi ₂ O ₃				
C_{I}	2CaO-PbO_2 $4\text{CaO-3Bi}_2\text{O}_3$ ss $\alpha_1^{\prime\prime}$ -3CaO-4Bi $_2\text{O}_3$	2CaO-PbO_2 $4\text{CaO-3Bi}_2\text{O}_3$ $8\text{s} \alpha_1^{\prime\prime} - 3\text{CaO-4Bi}_2\text{O}_3$	2CaO·PbO ₂ 4CaO·3Bi ₂ O ₃ ss α'' ₁ -3CaO·4Bi ₂ O ₃				
C_2	2CaO·PbO ₂	2CaO·PbO ₂	2CaO·PbO ₂ ss α_1'' -3CaO·4Bi ₂ O ₃				
C_3	2CaO·PbO ₂ m	2©aO∙PbO ₂ m	2CaO⋅PbO ₂ m				

m - mixture of Bi₂O₃:PbO phases; a - amorphous phase; ss - solid solution

Our previous investigation [11] showed that the low temperature effects (550–650°C) are due to the formation and melting of the compounds which result from the reaction between Bi₂O₃ and PbO. The thermal effects around 700°C can be assigned to the formation of 2CaO·PbO₂. As far as the thermal effects of high temperatures are concerned, these are due to the reaction between Bi₂O₃ and CaO.

The complexity of the thermal analysis curves of the investigated ternary mixtures can be explained taking into account the complexity of the reactions in the binary systems: Bi₂O₃-PbO [15], Bi₂O₃-CaO [16] and CaO-PbO [17], which are components of the ternary system Bi₂O₃-PbO-CaO.

Isothermal treatments

The phase composition of the samples thermally treated under isothermal conditions is presented in Table 2.

The analysis of the results obtained at 600°C shows a rather high number of components. Some samples exhibit a broad band in the X-ray diffractograms assigned to an amorphous phase, showing that under such conditions the reactions still occur, some of the identified phases being non-equilibrium ones.

The formation of a higher number of compounds at 600°C is determined by the mechanism of formation of binary compounds containing Bi₂O₃. In the Bi₂O₃-PbO system the first phase generated at low temperatures is 6Bi₂O₃-PbO. As far as the system Bi₂O₃-CaO is concerned, at low temperatures, compounds with a higher Bi₂O₃ content than the equilibrium compounds are generated.

At 700°C the number of phases is lower. The obtained results agree with the literature data [18, 19] according to which in the field rich in Bi₂O₃ of the system Bi₂O₃-PbO-CaO, solid solutions with the lower limit of existence of 40% Bi₂O₃ are formed. In the field rich in CaO, the compounds 2CaO-PbO₂ and 4CaO-3Bi₂O₃ were evidenced. In the field rich in PbO, 2CaO-PbO₂ and Bi₂O₃-PbO compounds were identified. In the average field of the ternary system 2CaO-PbO₂ and Bi₂O₃-CaO were found.

Fig. 2 Phase relations in the Bi₂O₃-PbO-CaO system at 700°C (the fields of solid solutions are mentioned in [18])

The results obtained at 800°C do not differ significantly from those obtained at 700°C. In the samples thermally treated at 800°C the Bi:Pb compounds were not found, due to their melting.

An attempt to represent the phase relations in the Bi_2O_3 -PbO-CaO system at 700° C led us to the diagram shown in Fig. 2.

Conclusions

- Non-isothermal and isothermal investigations of the ternary system ${\rm Bi}_2{\rm O}_3$ -PbO-CaO were carried out.
- The non-isothermal investigations confirmed the complexity of the solid state reactions that occur in the studied system.
- The isothermal investigations showed that binary compounds and solid solutions rich in Bi₂O₃ are formed; no ternary compounds were identified in the ternary compositions.
- An attempt to record the phase equilibrium diagram of the $\rm Bi_2O_3$ –PbO–CaO system, at $700^{\rm o}$ C, was presented.

* * *

The authors are grateful to the Romanian Academy for the support of this work under Grant no.60/1998.

References

- 1 M. Zaharescu, A. Brăileanu, R. Mănăilă, V. Fruth and G. Tănase, Mat. Res. Bull., 27 (1992)
- 2 R. J. Cava, J. P. Remeika, T. T. M. Palstra and R. B. van Dover, Physica C, 150 (1988) 560.
- 3 N. Murayama, E. Sudo, M. Awano, K. Kani and Y. Torii, Jpn. J. Appl. Phys., 27 (1988) 1629.
- 4 U. Endo, S. Koyama and T. Kawai, Jpn. J. Appl. Phys., 28 (1989) L190.
- 5 B. Hong, J. Hahn and T. O. Mason, J. Am. Ceram. Soc., 73 (1990) 1965.
- 6 Y. T. Huang, W. N. Wang, S. F. Wu, C. Y. Shei, W. M. Hurng, W. H. Lee and P. T. Wu, J. Am. Ceram Soc., 73 (1990) 3507.
- 7 K. H. Yoon and H. B. Lee, J. Mater. Sci., 26 (1991) 5101.
- 8 R. B. Tripathi and D. W. Johnson Jr., J. Am. Ceram. Soc., 74 (1991) 247.
- 9 I. S. Luo, N. Merchant, V. A. Maroni, D. M. Gruen, B. S. Tani, W. L. Carter, G. N. Riley Jr. and K. H. Sandhage, Appl. Supercond., 1 (1993) 101.
- 10 M. Xu and D. K. Finnemore, J. Appl. Phys., 76 (1994) 1111.
- A. Brăileanu, M. Zaharescu, D. Crisan and E. Segal, Thermochim. Acta, 269/270 (1995) 553.
- 12 xxx JCPDS, International Center for Diffraction Data, 1985, Powder Diffraction File.
- 13 B. P. Burton, C. J. Rawn, R. S. Roth and N. M. Hwang, J. Res. Natl. Inst. Stand. Technol., 98 (1993) 469.
- 14 R. M. Biefeld and S. S. White, J. Am. Ceram. Soc., 64 (1981) 182.
- 15 A. Brăileanu, M. Zaharescu, D. Crisan and E. Segal, J. Thermal Anal., 49 (1997) 1197.
- 16 A. Brăileanu, M. Zaharescu, D. Crisan, D. Fătu, E. Segal and C. Dănciulescu, J. Thermal Anal., 47 (1996) 569.
- 17 M. Zaharescu, A. Brăileanu and D. Crisan, J. Thermal Anal., 40 (1993) 321.
- 18 A. El Harrak, P. Conflant, M. Drache and J. C. Boivin, J. Chim. Phys., 88 (1991) 1181.
- 19 M. Drache, P. Conflant and J. C. Boivin, Solid State Ionics, 57 (1992) 245.